Chartres 1: the cosmic coding of its towers in height

The lunar crescent atop the “moon” tower’s cross.

Chartres, in north-west France, is a very special version of the Gothic transcept cathedral design. Having burnt down more than once, due to wooden ceilings, its reconstruction over many building seasons and different masonic teams, as funds permitted, would have needed strong organizing ideas to inform the work (as per Master Masons of Chartres by John James).

Continue reading “Chartres 1: the cosmic coding of its towers in height”

Origins of the Olmec/Maya Number Sciences

ABOVE: Stela C from Tres Zapotes roughly rebuilt by Ludovic Celle and based on a drawing by Miguel Covarrubias.

Introduction

The archaeological view regarding the Maya, and their root progenitor the Olmec (1500 BCE onwards), is that cultural innovations were made within Mexico alongside an agrarian revolution consisting the “three sisters“, squash, maize (“corn”), and climbing beans. This agriculture led to civilizing skills and it reads like the Neolithic revolution in Mesopotamia after 4000 BCE, where irrigation made the fertile loam able to realize agricultural innovations from the northern golden triangle, leading to writing, trade, city states, religion, arithmetic and so on, all in isolation from European or Asian civilizations. The notion of diffusion from the ancient near east, or from India, could have occurred through ocean conveyors, of ocean currents and trade winds, has been proposed but never accepted. Yet there are reasons to think that, the astronomy and monumentalism of the pre-Columbian Mexican civilizations has clear precedents in the ancient near east and Asia.

Continue reading “Origins of the Olmec/Maya Number Sciences”

Knowing Time in the Megalithic

The human viewpoint is from the day being lived through and, as weeks and months pass, the larger phenomenon of the year moves the sun in the sky causing seasons. Time to us is stored as a calendar or year diary, and the human present moment conceives of a whole week, a whole month or a whole year. Initially, the stone age had a very rudimentary calendar, the early megalith builders counting the moon over two months as taking around 59 days, giving them the beginning of an astronomy based upon time events on the horizon, at the rising or setting of the moon or sun. Having counted time, only then could formerly unnoticed facts start to emerge, for example the variation of (a) sun rise and setting in the year on the horizon (b) the similar variations in moon rise and set over many years, (c) the geocentric periods of the planets between oppositions to the sun, and (d) the regularity between the periods when eclipses take place. These were the major types of time measured by megalithic astronomy.

The categories of astronomical time most visible to the megalithic were also four-fold as: 1. the day, 2. the month, 3. the year, and 4. cycles longer than the year (long counts).

Continue reading “Knowing Time in the Megalithic”

The Fourfold Nature of Sun and Moon

A previous post explained the anatomy of the primary celestial cycles of the Sun and Moon. The “resting” part of these cycles are the winter solstice (opposite the summer solstice which was today) and the dark moon (which is coming in a week, after the waning half moon day before yesterday). In the resting phase, the cosmological origin is traditionally found, containing all that is to manifest but that is not yet expressed. In this respect, the Big Bang is the equivalent for modern thinking, as the origin of the entire visible and invisible universe seen via modern instrumentation and discoveries.

Life is somehow connected with our large Moon, without which there could have been no living planet. The form of life appears influenced by the moon and its conjunctions with different planets. And without (a) the tides, (b) the tectonic plates supporting continents, and (c) the tilt and spin of the earth; the earth would be static rather than actively supporting the necessary rhythms of Life. A primordial collision created these features of our earth and moon, since the cyclic archetypes provide an essential framework for living beings, to which their bodies are synchronized through circadian and behavioral rhythms.

Continue reading “The Fourfold Nature of Sun and Moon”

Time and the Midpoints of the Sun and Moon

Our two luminaries, the sun and moon, share a similar form-in-time, as the seasonal year and the monthly phases of the moon. The form they share is of two extremes of opposite character, and two midpoints between these.

The Solar Extremes: At the solar extremes, the sun rises high in midsummer day and rises to a much lower point in midwinter day, extreme points at which the sun moves very slowly day-by-day these hence called solstices from the Latin, “sun stands still”.

The Lunar Extremes: These are the full moon, meaning its face is completely illuminated by the sun, and the dark moon, when the moon stands by and in front of the sun and so its face is not illuminated but during a rare solar eclipse, the dark disk of the moon can be seen slowly crossing the sun’s face since the moon moves 12.368 times faster than the sun that defines each day.

The Solar Midpoints: These occur when the sun rises exactly east and sets directly west, everywhere on the earth. These moments are called Equinox because the length of the day then equals (in Latin: “equi”) and the length of the night (in Latin, “nox”). In the year these two equinoxes are called Spring, when light and heat from the sun are growing (waxing), and Autumn, when light and heat are diminishing (waning).

The Lunar Midpoints: Like the sun, these are exactly between its extremes, when exactly half the moon’s face is illuminated. In the morning, as the full moon approaches the sun, its gibbous (less-than-circular) face is waning until it reaches the point of half illumination by the sun. In contrast, the dark moon reappears as a crescent moon, pulling away from the sun setting in the evening.

The common factor between the midpoints of both sun and moon is that this is when time begins, in the sense that, at two equinoxes and at the two half-moons, (a) the sun’s daily sunrise on the horizon is moving fastest and (b) The sun’s illumination of the moon is changing most quickly. In both cases, this allowed the megalithic to accurately start and finish their counting of these time cycles of the year and the month. In both cases, midpoints could most accurately define the day on which an event occurred.

The following post takes this further.

Geometry 6: the Geometrical AMY

By 2016 it was already obvious that the lunar month (in days) and the PMY, AMY and yard (in inches) had peculiar relationships involving the ratio 32/29, shown above. This can now be explained as a manifestation of day-inch counting and the unusual numerical properties of the solar and lunar year, when seen using day-inch counting.

It is hard to imagine that the English foot arose from any other process than day-inch counting; to resolve the excess of the solar year over the lunar year, in three years – the near-anniversary of sun and moon. This created the Proto Megalithic Yard (PMY) of 32.625 day-inches as the difference.

Figure 1 The three solar year count’s geometrical demonstration of the excess in length of 3 solar years over 3 lunar years as the 32.625 day-inch PMY.

A strange property of N:N+1 right triangles can then transform this PMY into the English foot, when counting over a single lunar and solar year using the PMY to count months.

The metrological explanation

Continue reading “Geometry 6: the Geometrical AMY”