Understanding the Kaaba: Ark, Pole, and Time

The post discusses the prophet Mohammad as the last prophet of Allah, emphasizing the origins of Islam in Mecca, the role of the Kaaba, and its connections to Abraham and Ishmael. It explores the Kaaba’s symbolism as an Ark, its geometric significance, and how it represents a divine relationship with time and celestial events, illustrating the intertwining of religious and astronomical concepts.

first published 2016
now part of chapter 8 of Sacred Number: Language of the Angels (2021)

The prophet Mohammad declared he was the last prophet of Allah, a name resembling the El Shaddai (trans. Lord God, KJV), the god of Abraham in the Bible. Mohammad galvanised the Arabs and nearby nations with an original religion, branching off from the start of the Patriarchs found in the Bible’s first book, Genesis. His story follows Ishmael, the first son of Abraham, from whom the Arabs believe themselves descended.

The Kaaba of Abraham (left) and Mohammad

Mohammad’s religion of Islam (“salvation”) started in Mecca where he received visions of angels and spontaneously recited suras (verses) which became the Quran and associated texts. An unknown history of Abraham and Ishmael emerged, intimate with Mecca, long a spiritual center for the Arabic world. Mecca’s principle monument, the Kaaba or “cube”, has taken a number of forms. Adam located it as a dolmen created by God when Adam was formed; Ishmael built the next design for his father, “open to the sky”, using surface stones from nearby mountains; and Mohammad’s dispensation adds ancient stories about cubic arks and located these as a renewed Kaaba, the prime center, or Pole of redemption for the world.

The three keys here will be the Kaaba as an Ark, the Pole (Qutub) and model of Great Time.

Continue reading “Understanding the Kaaba: Ark, Pole, and Time”

Astronomical Rock Art at Stoupe Brow, Fylingdales

first published 28 October 2016

I recently came across Rock Art and Ritual by Brian Smith and Alan Walker, (subtitled Interpreting the Prehistoric landscapes of the North York Moors. Stroud: History Press 2008. 38.). It tells the story: Following a wildfire of many square miles of the North Yorkshire Moors, thought ecologically devastating, those interested in its few decorated stones headed out to see how these antiquities had fared.

Background

Fire had revealed many more stones carrying rock art or in organised groups. An urgent archaeological effort would be required before the inevitable regrowth of vegetation.


Figure 1 Neolithic stone from Fylingdales Moor | Credit: Graham Lee, North York Moors National Park Authority.

A photo of one stone in particular attracted my attention, at a site called Stoupe Brow (a.k.a. Brow Moor) near Fylingdales, North Yorkshire.

Continue reading “Astronomical Rock Art at Stoupe Brow, Fylingdales”

Music of the Olmec Heads

Seventeen colossal carved heads are known, each made out of large basalt boulders. The heads shown here, from the city of San Lorenzo [1200-900 BCE], are a distinctive feature of the Olmec civilization of ancient Mesoamerica. In the absence of any evidence, they are thought to be portraits of individual Olmec rulers but here I propose the heads represented musical ratios connected to the ancient Dorian heptachord, natural to tuning by perfect fifths and fourths. In the small Olmec city of Chalcatzingo [900-500BCE] , Olmec knowledge of tuning theory is made clear in Monument 1, of La Reina the Queen (though called El Rey, the King, despite female attire), whose symbolism portrays musical harmony and its relationship to the geocentric planetary world *(see picture at end).

* These mysteries were visible using the ancient tuning theories of Ernest G. McClain, who believed the Maya had received many things from the ancient near east. Chapter Eight of Harmonic Origins of the World was devoted to harmonic culture of the Olmec, the parent culture of later Toltec, Maya, and Aztec civilizations of Mexico.

Continue reading “Music of the Olmec Heads”

Story of Three Similar Triangles

first published on 24 May 2012,

Figure 1 Robin Heath’s original set of three right angled triangles that exploited the 3:2 points to make intermediate hypotenuses so as to achieve numerically accurate time lengths in units of lunar or solar months and lunar orbits.

Interpreting Lochmariaquer in 2012, an early discovery was of a near-Pythagorean triangle with sides 18, 19 and 6. This year (2018) I found that triangle as between the start of the Erdevan Alignments near Carnac. But how did our work on cosmic N:N+1 triangles get started?

Robin Heath’s earliest work, A Key to Stonehenge (1993) placed his Lunation Triangle within a sequence of three right-angled triangles which could easily be constructed using one megalithic yard per lunar month. These would then have been useful in generating some key lengths proportional to the lunar year:  

  • the number of lunar months in the solar year,
  • the number of lunar orbits in the solar year and 
  • the length of the eclipse year in 30-day months. 

all in lunar months. These triangles are to be constructed using the number series 11, 12, 13, 14 so as to form N:N+1 triangles (see figure 1).

n.b. In the 1990s the primary geometry used to explore megalithic astronomy was N:N+1 triangles, where N could be non-integer, since the lunation triangle was just such whilst easily set out using the 12:13:5 Pythagorean triangle and forming the intermediate hypotenuse to the 3 point of the 5 side. In the 11:12 and 13:14 triangles, the short side is not equal to 5.

Continue reading “Story of Three Similar Triangles”

The Best Eclipse Cycle

The anniversary of the Octon (4 eclipse years in 47 lunar months) did not provide similar eclipses and so, by counting more than four, the other motions of the Moon could also form part of that anniversary. This is especially true of the anomalistic month, which changes the changes the apparent size of the Moon within its phase cycle, recreate the same type of lunar eclipse after nineteen eclipse years. This 18 year and 11 day period is now taken as the prime periodicity for understanding eclipse cycles, called the Saros period – known to the Babylonian . The earliest discovered historical record of what is known as the saros is by Chaldean (neo-Babylonian) astronomers in the last several centuries BC.

The number of full moons between lunar eclipses must be an integer number, and in 19 eclipse years there are a more accurate 223 lunar months than with the 47 of the Octon. This adds up to 6585.3 days but the counting of full moon’s is obviously ideal as yielding near-integer numbers of months.

We noted in a past post that the anomalistic month (or AM), regulating the moon’s size at full moon, has a geometrical relationship with eclipse year (or EY) in that: 4 AM x pi (of 3.1448) equals the 346.62 days of the eclipse year as the circumference. Therefore, in 19 EY the diameter of a circle of circumference 19 x 346.62 days must be 4 x 19 AM so that , 76 AM x pi equals 223 lunar months, while the number of AM in 223 lunar months must be 239; both 223 and 239 being prime numbers.

Continue reading “The Best Eclipse Cycle”

How Geometries transformed Time Counts into Circles

Above: example of the geometry that can generate one or more circles,
equal to a linear time count, in the counting units explained below.

It is clear, one so-called “sacred” geometry was in fact a completely pragmatic method in which the fourfold nature of astronomical day and month counts allowed the circularization of counts, once made, and also the transmission of radius ropes able to make metrological circles in other places, without repeating the counting process. This “Equal Perimeter” geometry (see also this tag list) could be applied to any linear time count, through dividing it by pi = 22/7, using the geometry itself. This would lead to a square and a circle, each having a perimeter equal to the linear day count, in whatever units.

And in two previous posts (this one and that one) it was known that orbital cycles tend towards fourfold-ness. We now know this is because orbits are dynamic systems where potential and kinetic energy are cycled by deform the orbit from circular into an ellipse. Once an orbit is elliptical, the distance from the gravitational centre will express potential energy and the orbital speed of say, the Moon, will express the kinetic energy but the total amount of each energy combined will remain constant, unless disturbed from outside.

In the megalithic, the primary example of a fourfold geometry governs the duration of the lunar year and solar year, as found at Le Manio Quadrilateral survey (2010) and predicted (1998) by Robin Heath in his Lunation Triangle with base equal to 12 lunar months and the third side one quarter of that. Three divides into 12 to give 4 equal unit-squares and the triangle can then be seen as doubled within a four-square rectangle, as two contraflow triangles where the hypotenuse now a diagonal of the rectangle.

Continue reading “How Geometries transformed Time Counts into Circles”