Centers of the World

Explores the concept of sacred centers in relation to ancient civilizations and their geographical patterns. It discusses how these centers, influenced by Earth’s nature, manifest through numerically significant shapes and polygons. The movement from the poles affects mapping and measurements, revealing harmonious relations in spatial designs reflective of cosmic principles.

18th-century illustration of Mount Kailash, depicting the holy family: Shiva and Parvati, cradling Skanda with Ganesha by Shiva’s side

A culture often creates centers, While someone may gets powerful, and everything gets built around them and the rest is history, the concept of sacred center came from the nature of the Earth itself. In Egypt the meridian was both explicit and dominant in the south to north flow of the Nile, after the desertification of the Sahara. In Britain and elsewhere however, large landscape geometries were created of an approximately circular nature and this is a natural result of the near-spherical Earth.

Continue reading “Centers of the World”

Metrology of a Bronze Age Dodecahedron

The Norton Disney Archaeology Group found an example of a “Gallo Roman Dodecahedron”. One of archaeology’s great enigmas,
there are now about 33 known examples in what was Roman occupied Britain.

An Interpretation of its Height

The opposed flat pentagons of a regular duodecagon gives us its height, in this case measured to be 70 mm. Dividing 0.070 meters by 0.3048 gives 0.22965 feet and, times 4, gives a possible type of foot as 0.91864 or 11/12 feet**.

** Where possible, one should seek the rational fraction of the foot, here 11/12, over the decimal measurement which assumed base-10 arithmetic and loses the integer factors at work within the system of ancient foot-based metrology.

The Simplest Likelihood

Continue reading “Metrology of a Bronze Age Dodecahedron”

The Metonic Period at Ushtogai Square

If one takes the figure of 940 feet (that is, 286.512 meters) as the side length factorizing 940 gives 20 x 47 and 47 (a prime number) times 5 gives 235 which is the number of lunar months in 19 solar years: the Metonic period. image by Google Earth

This is the larger of three bounding periods for the sun, moon, and earth. The lower boundary is exactly 19 eclipse years, called the Saros eclipse period of 18.03 solar years. . Within that range of 18-19 years lies the moon’s nodal period of 18.618 years, this being the time taken for the two lunar nodes, of the lunar orbit, to travel once backwards around the ecliptic. It is only at these nodal points that eclipses of sun and moon can occur, when both bodies are sitting on the nodes.

Continue reading “The Metonic Period at Ushtogai Square”

Parthenon as a New Model of the Meridian

This was published as The Geodetic And Musicological Significance Of The Shorter Side Length Of The Parthenon As Hekatompedon Or ‘Hundred-Footer’ in Music and Deep Memory: Speculations in ancient mathematics, tuning, and tradition, in memoriam Ernest G. McClain. Edited by Bryan Carr and Richard Dumbrill. pub: Lulu. photo: Steve Swayne  for Wikipedia on Parthenon.

This note responds to Kapraff and McClain’s preceding paper, in which they discover a many-faceted musical symbolism in the Parthenon. Specifically,  Ernst  Berger’s  new measurements include the shorter side of the triple pedestal of the monument as an accurate length to represent one second of the double meridian of the earth. By applying a knowledge of ancient metrology, Anne Bulckens’ doctoral derivations of a root foot can resolve to a pygme of 9/8 feet, of which one second of latitude would contain 90 such feet. However, as a ‘hundred footer’, the foot  length  should  then be 81/80 (1.0125) feet, the ratio  of  the syntonic comma. This would indicate a replacement, by Classical times, of the geographical constant of 1.01376 feet  within the model of the earth since the original model, by the late megalithic, assumed that the meridian was exactly half of the mean circumference of the earth. These alternative geographical constants co-incidentally represent the ubiquitous theme in ancient musicology of the transition between Pythagorean and  Just tunings and their respective commas of Pythagorean 1.01364 … (in metrology 1.01376) and syntonic 81/80 (1.0125).

Continue reading “Parthenon as a New Model of the Meridian”

π and the Megalithic Yard

The surveyor of megalithic monuments in Britain, Alexander Thom (1894 – 1985), thought the builders had a single measure called the Megalithic Yard which he found in the geometry of the monuments when these were based upon whole number geometries such as Pythagorean triangles. His first estimate was around 2.72 feet and his second and final was around 2.722 feet. I have found the two megalithic yards were sometimes 2.72 feet because the formula for 272/100 = 2.72 involved the prime number 17 as 8 x 17/ 100, and this enabled the lunar nodal period of 6800 days to be modelled and and the 33 year “solar hero” periods to be modelled, since these periods both involve the prime number 17 as a factor. In contrast, Thom’s final megalithic yard almost certainly conformed to ancient metrology within the Drusian module in which 2.7 feet times 126/125 equals 2.7216 feet, this within Thom’s error bars for his 2.722 feet as larger than 2.72 feet.

Continue reading “π and the Megalithic Yard”

Working with Prime Numbers

Wikipedia diagram by David Eppstein :
This is an updated text from 2002, called “Finding the Perfect Ruler”

Any number with limited “significant digits” can be and should be expressed as a product of positive and negative powers of the prime numbers that make it up. For example, 23.413 and 234130 can both be expressed as an integer, 23413, multiplied or divided by powers of ten.

What Primes are

Primes are unique and any number must be prime itself or be the product of more than one prime. Having no factors, prime numbers are odd and cannot be even since the number 2 creates all the even numbers, meaning half of the ordinals are not prime once two, the first “number” as such, emerges.

Each number can divide one (or any other number) into that number of parts. In the case of three (fraction 1/3) only one in three higher ordinal numbers (every third after three) will have three in it and hence yield an integer when three divides it.

Four is the first repetition of two (fraction ½) but also the first square number, which introduces the first compound number, the geometry of squares and the notion of area.

Ancient World Maths and Written Language

The products of 2 and 3 give 6, 12, etc., and the perfect sexagesimal like 60, 360 were combined with 2 and 5, i.e. 10, to create the base 60, with 59 symbols and early ancient arithmetic, in the bronze age that followed the megalithic and Neolithic periods.

Continue reading “Working with Prime Numbers”