Goddess of Time in the Sky

Explores the relationship between ancient astronomical practices and megalithic cultures, highlighting how early societies understood time through celestial cycles. It contrasts matrilineal hunter-gatherer societies with later patriarchal agricultural ones, suggesting that megalithic structures reflect deep, sacred knowledge of the cosmos and have influenced subsequent architectural designs across civilizations.

Above: (center) The form of the Minoan “horns of consecration”, on the island of Crete, followed (outside) the form of the manifestations of Venus in her synodic period.

Time appears to march on at what seems a constant rate. In this way time has two opposite directions, the somewhat known past and the largely unknown future. However, events in the sky repeat and so they can be predicted as seasons within a year or lunar phases within a month. Even before modern calendars, stone age humans counted the days in a month to understand recurrence of the menstrual period and know when moonlight would be strong again at night.

Figure 1 (above) L’Abri Blanchard Tally Bone 30,000 BP with (below) Alexander Marshack’s interpretation, showing marks as days shaped to express the moon’s phase, over 59 whole days or two lunar months.

Two months happen to equal 59 whole days: a lunar month is 29.53 days long, just over twenty-nine and a half, which is half of 59. In the artifact shown on the top of figure 1, each day was carved upon a flat bone, each mark appearing varied in shape and depth to show the moon’s changed phase on a given day. The flat bone enabled a cyclic shape to be used, of 59 marks, which “ate its own tail”: showing there were always the same number of days in two “moons”. This sameness emerges from dividing the recurring time of the solar day into the time of the month’s phases over two months, to give the recurring whole number of 59, then forever useful as a knowledge object.

Continue reading “Goddess of Time in the Sky”

Medieval Solfeggio within the Heptagonal Church of Rieux Minervois

This paper responds to Reichart and Ramalingam’s study of three heptagonal churches[1], particularly the 12th century church at Rieux Minervois in the Languedoc region of France (figure 1a).

image: The Church in situ

Reichart and Ramalingam discuss the close medieval association of the prime number seven[2] with the Virgin Mary, to whom this church was dedicated. The outer wall of the original building still has fourteen vertical ribs on the inside, each marking vertices of a tetraheptagon, and an inner ring of three round and four vertex-like pillars (figure 1b) forming a heptagon that supports an internal domed ceiling within an outer heptagonal tower. The outer walls, dividable by seven, could have represented an octave and in the 12th century world of hexachordal solmization (ut-re-mi-fa-sol-la [sans si & do])[3]. The singing of plainchant in churches provided a melodic context undominated by but still tied to the octave’s note classes. Needing only do-re-mi-fa-sol-la, for the three hexachordal dos of G, C and F, the note letters of the octave were prefixed in the solmization to form unique mnemonic words such as “Elami”.It is therefore possible that a heptagonal church with vertices for the octave of note letters would have been of practical use to singers or their teachers.

The official plan of Rieux Minervois

12th Century Musical Theory

In the 10th Century, the Muslim Al-Kindi was first to add two tones to the Greek diatonic tetrachord of two tones and single semitone (T-T-S) and extend four notes to the six notes of our ascending major scale, to make TTSTT. This system appeared in the Christian world (c. 1033) in the work of Guido of Arezzo, a Benedictine monk who presumably had access to Arabic translations of al-Kindi and others [Farmer. 1930]. Guido’s aim was to make Christian plainsong learnable in a much shorter period, employing a dual note and solfege notation around seven overlapping hexachords called solmization. Plainsongs extending over one, two or even three different hexachords could then be notated.

Continue reading “Medieval Solfeggio within the Heptagonal Church of Rieux Minervois”

Cologne Cathedral Facade as Double Square

image: The Gothic cathedral of Cologne by night, by Robert Breuer CC-SA 3.0

On the matter of facades of Gothic cathedrals, I hark back to previous work (February 2018) on Cologne cathedral. This was published in a past website that was destroyed by its RAID backup system!

As we have seen with Chartres, some excellent lithographs with scales can often exist online from which one can interpret their sacred geometrical form and even the possible measures used to build that form. The Gothic norm for a facade seem more closely followed at Cologne facade which has two towers of (nearly) equal height.

We saw at Chartres that an underlying geometry using multiple squares may have been used to define a facade and bend it towards a suitable presentation of astronomical time, in a hidden world view that God’s heaven for the Earth is actually to be found in the sky as a pattern of time. This knowledge emerged with the megaliths and, in the medieval, it appeared again in monumental religious buildings built by masons who had inherited a passed-down but secret tradition.

A Prologue to Cathedral Music

Continue reading “Cologne Cathedral Facade as Double Square”

Gurdjieff, Octave Worlds & Tuning Theory (2019)

This is a paper I suggested for the All and Everything conference in Cumbria, but it was not selected. It developed a number of strands, which I offer here as a snapshot of my thinking and research around 2019. This text was modified to become appendix 3 of my Sacred Number and the Language of the Angels (2021).

Abstract

The first part presents what has only recently become known about ancient musical theory, to better understand the All and Everything of Gurdjieff’s intellectual output. This must include In Search of the Miraculous (Search, 1916-18) Beelzebub’s Tales (Tales, 1949) and Meetings with Remarkable Men (Meetings, 1963). In part 2 ancient monuments are shown to record a ‘lateral octave’ connecting humanity to the planetary world, 24. Part 3 explores the significance of the Moon in Gurdjieff’s lectures and writing. An appendix reviews the conventional virtues of the Moon as accepted by modern science, stabilising earth, enabling life and beings such as we, to evolve into appropriate habitats.

Contents

Table of Contents

Part 2: Where are the Lateral Octaves?
Part 3: The Significance of the Moon
Appendix 1: A Moon that created Life?
Appendix 2: Reference Charts from Search
Appendix 3: Index of the Moon in Search & Tales
Moon in Search
Moon in Tales
Bibliography

Introduction

Publications about Gurdjieff’s ideas appeared after he and Ouspensky had died. The main works of Gurdjieff’s words are Search, Tales and Meetings. Beyond these lie autobiographical books and compendia of Gurdjieff’s ideas, by his students. Some of his students also looked into traditional sources such as Sufism and Vedanta, and followed up on new scholarship relating to cosmological ideas such as world mythology (Hamlet’s Mill, The Greek Myths); the number sciences of Pythagorean schools and Plato (Source books); ancient buildings (Megalithic Sites in Britain, Ancient Metrology, The Temple of Man); and musical tuning theory (The Myth of Invariance, Music and the Power of Sound).

Continue reading “Gurdjieff, Octave Worlds & Tuning Theory (2019)”

Primacy of low whole numbers

  1. Preface
  2. Primacy of low whole numbers
  3. Why numbers manifest living planets
  4. Numbers, Constants and Phenomenology
  5. Phenomenology as an Act of Will

Please enjoy the text below which is ©2023 Richard Heath: all rights reserved.

What we call numbers start from one, and from this beginning all that is to follow in larger numbers is prefigured in each larger number. And yet, this prefigurement, in the extensive sense {1 2 3 4 5 6 7 etc.}, is completely invisible to our customary modern usage for numbers, as functional representations of quantity. That is, as the numbers are created one after another, from one {1}, a qualitative side of number is revealed that is structural in the sense of how one, or any later number, can be divided by another number to form a ratio. The early Egyptian approach was to add a series of unitary ratios to make up a vulgar* but rational fraction. This was, for them, already a religious observance of all numbers emerging from unity {1}.  The number zero {0} in current use represents the absence of a number which is a circle boundary with nothing inside. The circle manifesting {2} from a center {1} becomes the many {3 4 5 6 7 …}.

The number one manifests geometrically as the point (Skt “bindu”) but in potential it is the cosmological centre of later geometries, the unit from which all is measured and, in particular, the circle at infinity.

Two: Potential spaces

Continue reading “Primacy of low whole numbers”

Music, part 1: Ancient and Modern

We would know nothing of music were it not that somewhere, between the ear and our perceptions, what we actually hear (the differences between different frequencies of sound, that is, different tones) is heard as equivalent musical intervals (such as fifths, thirds, tones, semitones, etc), of the same size, even when the pitch range of the tones are different. This is not how musical strings work, where intervals of the same size get smaller as the pitch at which tones occur, grows larger. On the frets of a guitar for instance, if one plays the same intervals in a different key, the same musical structure, melodic and harmonic, is perfectly transposed, but the frets are spaced differently.

The key is that human hearing is logarithmic and is based upon the number two {2}, the “first” interval of all, of doubling. This can only mean that the whole of the possibilities for music are integral to human nature. But this miraculous gift of music, in our very being, is rarely seen to be that but, rather, because of the ubiquity of music, especially in the modern world, the perception of music is not appreciated as, effectively, a spiritual gift.

Music is often received as a product like cheese, in that it is to be eaten but, to see how this cheese is made from milk requires us to see, from its appearance as a phenomenon, what music perception is made up of . Where does music come from?

Normally a part of musicology, that subject is full of logical ambiguities, confusing terminology, unresolved opinions, and so on. Those who don’t fully understand the role of number in making music work, concentrate on musical structures without seeing that numbers must be the only origin of music.

The ancient explanation of music was that everything comes out of the number one {1}, so that octaves appear with the number two {2/1}, fifths from three {3/2}, fourths from four {4/3}, thirds from five {5/4} and minor thirds from six {6/5}. Note that, (a) the interval names refer to the order of resulting note within an octave, (b) that intervals are whole number ratios differing by one and that, (c) the musical phenomenon comes out of one {1}, and not out of zero {0}, which is a non-number invented for base ten arithmetic where ten {10} is one ten and no units.

Another miracle appears, in that the ordinal numbers {1 2 3 4 5 6 7 8 9 etc.} naturally create, through their successiveness, all the larger intervals before the seventh number {1 2 3 4 5 6 7} leaving the next three {8 9 10} to create two types of tone {9/8 10/9} and a semitone {16/15} thereafter {11 12 13 14 15 16}: by avoiding all those numbers whose factors are not the first three primes {2 3 5}. Almost the whole potential of western music is therefore built out of the smallest numbers!

This simplicity in numbers has now been obscured, though the structure of music remains in the Equal Temperament form of tuning evolved in the last millennium. By having twelve equal semitones that sum to the number two, we can now transpose melodies between keys (of the keyboard) but we have pretty much lost the idea of scales. Instead, each key is the major diatonic {T T S T T T S} (where T = tone and S = semitone intervals) starting from a different key. The fifth is called dominant and fourth subdominant and the black notes (someway fiendish to learn) required to achieve the major key in all keys but C which is all white keys.

The old church scales are achievable by over ruling the clef with accidental notes, and the reason for different keys sounding different is that they contain aspects of what were the scales. So a pop song, for example, is usually in a scale. “Bus Stop” by the Hollies was in the Locrian scale.

Equal Temperament enabled the Western tradition to create its Classical repertoire but it has made ancient musical theory very distant and has abandoned the exact ratios it used to use since every semitone is identical and irrational. Plato described this kind of solution as the best compromise, where every social class of musical numbers has sacrificed some thing of their former self in order to achieve the riches versatility bestows upon modern musical composition.

To be continued.