Counting the Moon: 32 in 945 days

One could ask “if I make a times table of 29.53059 days, what numbers of lunar months give a nearly whole number of days?”. In practice, the near anniversary of 37 lunar months and three solar years contains the number 32 which gives 945 days on a metrological photo study I made of Le Manio’s southern curb (kerb in UK) stones, where 32 lunar months in day-inches could be seen to be 944.97888 inches from the center of the sun gate. This finding would have allowed the lunar month to be approximated to high accuracy in the megalithic of 4000 BC as being 945/32 = 29.53125 days.

Silhouette of day-inch photo survey after 2010 Spring Equinox Quantification of the Quadrilateral.

One can see above that the stone numbered 32 from the Sun Gate is exactly 32/36 of the three lunar years of day-inch counting found indexed in the southern curb to the east (point X). The flat top of stone 36 hosts the end of 36 lunar months (point Q) while the end of stone 37 locates the end of three solar years (point Q’). If that point is the end of a rope fixed at point P, then arcing that point Q’ to the north will strike the dressed edge of point R, thus forming Robin Heath’s proposed Lunation Triangle within the quadrilateral as,

points P – Q – R !

In this way, the numerical signage of the Southern Curb matches the use of day-inch counting over three years while providing the geometrical form of the lunation triangle which is itself half of the simpler geometry of a 4 by 1 rectangle.

The key additional result shows that 32 lunar months were found to be, by the builders (and then myself), equal to 945 days (try searching this site for 945 and 32 to find more about this key discovery). Many important numerical results flow from this.

Using Circumpolar Marker Stars

The marker stars within the circumpolar or arctic region of the sky have always included Ursa Major and Ursa Minor, the Great and Little Bear (arctic meaning “of the bears” in Greek), even though the location of the celestial North Pole circles systematically through the ages around the pole of the solar system, the ecliptic pole. In 4000 BC our pole star in Ursa Minor, called Polaris, was far away from the north pole and it reached a quite extreme azimuth to east and west each day, corresponding to the position of the sun (on the horizon in 4000 BCE at this latitude) at the midsummer solstice sunrise. This means angular alignments may be present to other important circumpolar stars in some of the stones initiating the Alignments at Le Menec, when these are viewed from the centre of the cromlech’s circle implicit in its egg-shaped perimeter.

Continue reading “Using Circumpolar Marker Stars”

Le Menec: as Sidereal Observatory

Today, an astronomer resorts to the calculation of where sun, moon or star should be according to equations of motion developed over the last four centuries. The time used in these equations requires a clock from which the object’s location within the celestial sphere is calculated. Such locations are part of an implicit sky map made using equatorial coordinates that mirror the lines of longitude and latitude. Our modern sky maps tell us what is above every part of the earth’s sphere when the primary north-south meridian (at Greenwich) passes beneath the point of spring equinox on the ecliptic. Neither a clock, a calculation nor a skymap was available to the megalithic astronomer and, because of this, it has been presumed that prehistoric astronomy was restricted to what could be gleaned from horizon observations of the sun, moon, and planets.

Continue reading “Le Menec: as Sidereal Observatory”

Multiple Squares to form Flattened Circle Megaliths

above: a 28 square grid with double, triple (top), and four-square rectangles (red),
plus (gray again) the triple rectangles within class B

Contents

1.     Problems with Thom’s Stone Circle Geometries.

2.     Egyptian Grids of Multiple Squares.

3.     Generating Flattened Circles using a Grid of Squares.

ABSTRACT

This paper reviews the geometries proposed by Alexander Thom for a shape called a flattened circle, survivors of these being quite commonly found in the British Isles. Thom’s proposals appear to have been rejected through (a) disbelief that the Neolithic builders of megalithic monuments could have generated such sophistication using only ropes and stakes and (b) through assertions that real structures do not obey the geometry he overlaid upon his surveys.

Continue reading “Multiple Squares to form Flattened Circle Megaliths”

The Megalithic Numberspace

above: counting 37 lunar months six times to reach 222,
one month short of 223: the strong Saros eclipse period.

There is an interesting relationship between the multiple interpretations of a number as to its meaning, and the modern concept of namespace. In a namespace, one declares a space in which no two names will be identical and therefore each name is unique and this has to be so that, in computer namespaces such as web domain names, the routes to a domain can be variable but the destination needs to be a unique URL.

If sacred numbers had unique meanings then they would be like a namespace. Instead, being far more limited in variety, sacred numbers have more meanings, or interpretations, just as one might say that London has many linkages to other cities. In an ordinal number set, there are many relationships of a number to all the other numbers. This means whilst their are infinite numbers in the set of positive whole numbers, there are more than an infinity of relationships between the members of that set, such as shared number factors or squares, cubes, etc. of a number.

The mathematician Georg Cantor saw “doubly infinite” sets. Sets of relationships between members of an already infinite set, must themselves be more than infinite. He called infinite sets as aleph-zero and the sets of relationships within an infinite set (worlds of networking), he called aleph-one.

Originally, Cantor’s theory of transfinite numbers was regarded as counter-intuitive – even shocking.

Wikipedia

However, in the world of sacred numbers, although there can be large numbers, in the megalithic the numbers were quite small; partly due to the difficulty that numbers-as-lengths were physically real while later numeracy abstracted numbers into symbols and, using powers of ten, modern integers are a series of place ordered numbers (not factors) in base 10, as with 12,960,000 – possible for the ancient Babylonians but, I believe, not expected for the early megalithic.

Continue reading “The Megalithic Numberspace”

Knowing Time in the Megalithic

The human viewpoint is from the day being lived through and, as weeks and months pass, the larger phenomenon of the year moves the sun in the sky causing seasons. Time to us is stored as a calendar or year diary, and the human present moment conceives of a whole week, a whole month or a whole year. Initially, the stone age had a very rudimentary calendar, the early megalith builders counting the moon over two months as taking around 59 days, giving them the beginning of an astronomy based upon time events on the horizon, at the rising or setting of the moon or sun. Having counted time, only then could formerly unnoticed facts start to emerge, for example the variation of (a) sun rise and setting in the year on the horizon (b) the similar variations in moon rise and set over many years, (c) the geocentric periods of the planets between oppositions to the sun, and (d) the regularity between the periods when eclipses take place. These were the major types of time measured by megalithic astronomy.

The categories of astronomical time most visible to the megalithic were also four-fold as: 1. the day, 2. the month, 3. the year, and 4. cycles longer than the year (long counts).

Continue reading “Knowing Time in the Megalithic”