Modularity of Seven

Sacred Geometry is metrical, it is based upon the interactive properties of “natural” (that is, whole) numbers and cosmic constants.

We live in a civilization where everything is thought to be functionally due to forces and laws, these all calculated using numbers and algebra. For this reason, it is hard to see the influence of numbers acting directly in situations to reveal that, geometrical forms are only possible due to numbers. One such form is the equal perimeter circle and square: this figuring heavily in my later books, as an ancient model, and in postings on this website (opens in new tab).

Continue reading “Modularity of Seven”

The Cellular World of Twelve

The foot has twelve inches just as the British shilling had twelve pence. A good case can be made for twelve as a base like 10, since there are 12 months within the year and many ancient monuments can be seen to have employed duodecimal alongside decimal number, to good effect.

Until 1971 the currency in the United Kingdom of Britain was duodecimal, called pounds, shillings and pence.

This old system of currency, known as pounds, shillings and pence or lsd, dated back to Roman times when a pound of silver was divided into 240 pence, or denarius, which is where the ‘d’ in ‘lsd’ comes from. (lsd: librum, solidus, denarius). see historic-uk.com

There were 12 pence in a shilling and 20 shillings in a pound, that is 240 pennies. The change to a decimal (100) pence in a pound caused a lot of inflation during the changeover due to price opportunism, then part lasting recession. In British heads the skill of giving and taking change in a duodecimal arithmetic was soon lost. In the late 70’s my mother, when visiting the US, was amusingly referencing “old money”, alongside the exchange rate between a decimal pound and the decimal dollar, just as Greeks had problems with the Euro.

Continue reading “The Cellular World of Twelve”

The Stonehenge Crop Circle of 2002

One sees most clearly how a single concrete measure such as 58 feet can take the meaning of the design into the numbers required to create it. However, metrology of feet and types of feet can hide the elegance of a design.

photo by Steve Alexander of TemporaryTemples.co.uk

I received Michael Glickman’s Crop Circles: The Bones of God at the weekend and each chapter is a nicely written and paced introduction to a given years worth of crop circles generally in the noughties. The above is the second in proximity to Stonehenge reminding keen croppers of an earlier one. This cicle preceeded the late-season (August) circle at Crooked Soley that I have an analysis of soon to be posted, drawing on Allan Brown’s small book on it.

Glickman’s chapter 10 : Stonehenge Ribbons and Crooked Soley provided a tentative analysis of the Ribbons as having the ends of the ribbons measuring 58 feet. The design was observed as making use of a single half circle building block for most of the emergent six arms emerging from the center. Michael suggested that there were 13 equal units of 58 feet across the structure.

Figure 10.4 Showing thirteen divisions of one of the three diameters of ribbons. photo: Steve Alexander.

Continue reading “The Stonehenge Crop Circle of 2002”

St Peter’s Basilica: A Golden Rectangle Extension to a Square

above: The Basilica plan at some stage gained a front extension using a golden rectangle. below: Later Plan for St. Peter’s 16th–17th century. Anonymous. Metropolitan Museum.

Continue reading “St Peter’s Basilica: A Golden Rectangle Extension to a Square”

Double Square and the Golden Rectangle

above: Dan Palmateer wrote of this, “it just hit me that the conjunction of the circle to the golden rectangle existed.”

Here we will continue in the mode of a lesson in Geometry where what is grasped intuitively has to have reason for it to be true. It occurred to me that the square in the top hemisphere is the twin of a square in the lower hemisphere, hence this has a relationship to the double square rectangle. So one can (1) Make a Double Square and then (2) Find the center and (3) a radius can then draw the out-circle of a double square (see diagram below).

Continue reading “Double Square and the Golden Rectangle”

Working with Prime Numbers

Wikipedia diagram by David Eppstein :
This is an updated text from 2002, called “Finding the Perfect Ruler”

Any number with limited “significant digits” can be and should be expressed as a product of positive and negative powers of the prime numbers that make it up. For example, 23.413 and 234130 can both be expressed as an integer, 23413, multiplied or divided by powers of ten.

What Primes are

Primes are unique and any number must be prime itself or be the product of more than one prime. Having no factors, prime numbers are odd and cannot be even since the number 2 creates all the even numbers, meaning half of the ordinals are not prime once two, the first “number” as such, emerges.

Each number can divide one (or any other number) into that number of parts. In the case of three (fraction 1/3) only one in three higher ordinal numbers (every third after three) will have three in it and hence yield an integer when three divides it.

Four is the first repetition of two (fraction ½) but also the first square number, which introduces the first compound number, the geometry of squares and the notion of area.

Ancient World Maths and Written Language

The products of 2 and 3 give 6, 12, etc., and the perfect sexagesimal like 60, 360 were combined with 2 and 5, i.e. 10, to create the base 60, with 59 symbols and early ancient arithmetic, in the bronze age that followed the megalithic and Neolithic periods.

Continue reading “Working with Prime Numbers”