Alignment of Ushtogai Square to Vega

The Ushtagai Square is angled to fit an invisible three-by-three square aligned to the North Pole. This grid could be to help lay out the square but then why make it angled to the diagonal of the double squares within the grid?

Figure 1. A Google Earth image of Ushtogai from above with yellow lines along its sides conforming to a 3-by-3 square aligned to north. The square sides of the monument obviously follow the angle of the double squares within the grid.

Following on from the first article, for some time I have been looking at northerly alignments within megalithic monuments as a possible siting mechanism for the circumpolar stars.

For example, the Le Menec cromlech in Brittany is a large Type 1 egg that this series of articles explores as having been a sidereal observatory, whose outputs formed The Alignments of Carnac, to the east. Modern observatories use sidereal or star clocks, and the circumpolar stars around the North Pole are such a clock. These stars directly show the rotation of the earth, from which the sidereal day can be tracked. (please use the search box for “sidereal” and “circumpolar” for a range of articles about this)

Continue reading “Alignment of Ushtogai Square to Vega”

Utility of the Ushtogai Square to count the Nodal Period

Using Google Earth, a large landform was found in Kazakhstan (Dmitriy Dey, 2007); a square 940 feet across with diagonals, made of evenly spaced mounds. We will demonstrate how the square could have counted the lunar nodal period of 6800 days (18.617 solar years)

 images courtesy of Wild Ticket

Counting the Lunar Nodal Period

One can see the side length of the square contains seventeen (17) mounds, with 16 even distances between the mounds. Were one to count each side as 17 mounds, then four times 17 gives 68 which reminds us of the 6800 days in the moon’s nodal period of 18.617 years. If 17 can be multiplied by 100, then one could count the nodal period in days, and to do this one notices that the diagonals have one central space, around which each of four arms are 10 mounds long.

The Ushtogai Square from above, north to the top.

Continue reading “Utility of the Ushtogai Square to count the Nodal Period”