St Peter’s Basilica: A Golden Rectangle Extension to a Square

above: The Basilica plan at some stage gained a front extension using a golden rectangle. below: Later Plan for St. Peter’s 16th–17th century. Anonymous. Metropolitan Museum.

Continue reading “St Peter’s Basilica: A Golden Rectangle Extension to a Square”

St Peter’s Basilica: Starcut & Equal Perimeter

In Malcolm Stewart’s book on Sacred Geometry, his starcut diagram was applied to Raphael’s painting The School of Athens to create radiants to the people standing around the Athenium Lyceum. “If the starcut was the central geometrical determinant for Raphael’s formal depiction of classical philosophy” it was a “known authoritative device” or framework for geometrical understanding. Stewart found a potential antecedent for such a technique Donato Brahmante’s plan for St Peter’s (see above) which was square like a starcut diagram.

left: Stewarts book cover right: The simplest version of the starcut square where the sides are divided by two and the outer square is four squares of nine, which is 62 = 36 squares and there an octagon within the crossing lines. If there were 72 squares, then the octagon’s vertices would all be on crossings.

Continue reading “St Peter’s Basilica: Starcut & Equal Perimeter”

Starcut Diagram: geometry to define tuning

This is a re-posting of an article thought lost, deriving in part from Malcolm Stewart’s Starcut Diagram. The long awaited 2nd edition Sacred Geometry of the Starcut Diagram has now been published by Inner Traditions. Before this, Ernest McClain had been working on tuning via Gothic master Honnecourt’s Diagram of a Man (fig. 2), which is effectively a double square version of the starcut diagram.

The square is the simplest of two dimensional structures to draw, giving access to many fundamental values; for example the unit square has the diagonal length equal to the square root of two which, compared to the unit side length, forms the perfect tritone of 1.414 in our decimal fractional notation (figure 1 left). If the diagonal is brought down to overlay a side then one has the beginning of an ancient series of root derivations usually viewed within the context of a double square, a context often found in Egyptian sacred art where “the stretching of the rope” was used to layout temples and square grids were used to express complex relationships, a technique Schwaller de Lubitz termed Canevas (1998). Harmonically the double square expresses octave doubling (figure 1 right).

Figure 1 left: The doubling of the square side equal 360 units and right: The double square as naturally expressing the ordinal square roots of early integers.

Continue reading “Starcut Diagram: geometry to define tuning”

Double squares: Venus and the Golden Mean

The humble square, with side length equal to one unit, is like the number one. It’s area is one square unit and, when we add another identical square to one side, the double square appears. Above right the Egyptian Djed column is shown within a double square. The Djed is the rotating earth which the gods and demons have a tug of war over. This is also a key story in the Indian tradition, called The Churning of the Oceans, where the churning creates both the food of the gods (soma) and every wonderful thing that emerges upon the Earth. In this, the double square symbolized the northern and southern hemispheres of the Earth. The anthropomorphic form Djed shown above has elbows indicative of the Double square.

Figure 1 The churning of the ocean (Samudra Manthan in Sanskrit)

The Djed appears to be the general principle of rotation of, and apparent motion around, the earth.

Continue reading “Double squares: Venus and the Golden Mean”

Double Square and the Golden Rectangle

above: Dan Palmateer wrote of this, “it just hit me that the conjunction of the circle to the golden rectangle existed.”

Here we will continue in the mode of a lesson in Geometry where what is grasped intuitively has to have reason for it to be true. It occurred to me that the square in the top hemisphere is the twin of a square in the lower hemisphere, hence this has a relationship to the double square rectangle. So one can (1) Make a Double Square and then (2) Find the center and (3) a radius can then draw the out-circle of a double square (see diagram below).

Continue reading “Double Square and the Golden Rectangle”

Hounds & Jackals as Venus Counter

The Petrie Museum has a game called Hounds & Jackals or 58 holes, from Egypt’s Middle Kingdom and widely found elsewhere, in the ancient world. Two players had a set of sharp ended sticks with animal heads, which sat in each of the 29 + 29 = 58 holes. The top hole is larger (as with the Cretan 34-hole circular kernos, at Malia in Crete).

Cretan 34-hole Kernos

One can see the possibilities in such artifacts stored objective numerical information while being kept, within the cultural life of the people, through having a valuable everyday purpose (rather like the 52 playing cards do). This was exactly how Gurdjieff saw it that, he proposed a meeting of wise men in Babylon, it was seen that ancient knowledge would be forgotten were it not that art, games, buildings, dances, music and so on were designed to incorporate the knowledge until such time that human would be able, once again, to understand what they meant. In his book Beelzebub’s Tales he termed such artifacts as being logominisms, loosely translating to “meaning objects”.

Continue reading “Hounds & Jackals as Venus Counter”